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Abstract

Purpose – The purpose is to present a new approach for studying the phenomenon of traveling
bubble cavitation.

Design/methodology/approach – A flow around a rigid, 2D hydrofoil (NACA-0012) with a smooth
surface is analyzed computationally. The Rayleigh-Plesset equation is numerically integrated to
simulate the growth and collapse of a cavitation bubble moving in a varying pressure field. The
analysis is performed for both incompressible and compressible fluid cases. Considering the initial
bubble radius as a uniformly distributed random variable, the probability density function of the
maximum collapse pressure is determined.

Findings – The significance of the liquid compressibility during bubble collapse is illustrated.
Furthermore, it is shown that the initial size of the bubble has a significant effect on the maximum
pressure generated during the bubble collapse. The maximum local pressure developed during
cavitation bubble collapse is of the order of 104 atm.

Research limitations/implications – A single bubble model that does not account for the effect of
neighboring bubbles is used in this analysis. A spherical bubble is assumed.

Originality/value – A new approach has been developed to simulate traveling bubble cavitation by
interfacing a CFD solver for simulating a flow with a program simulating the growth and collapse of
the bubble. Probabilistic analysis of the local pressure due to bubble collapse has been performed.
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Nomenclature
c1 ¼ velocity of sound in liquid at infinity
k ¼ turbulent kinetic energy
p ¼ pressure
p1 ¼ static pressure of undisturbed liquid
pb ¼ pressure inside the bubble
pv ¼ vapor pressure of the liquid
pg ¼ pressure of the non-condensable gas

in the bubble
P ¼ static pressure in the liquid
Pc ¼ critical pressure
r ¼ distance from the center of the

bubble.
R ¼ bubble radius
Rc ¼ critical radius
Rmax ¼ maximum bubble radius
Rmin ¼ minimum bubble radius

_R; €R ¼ first and second derivatives of R with
respect to time

t ¼ time
u ¼ fluid velocity
r ¼ fluid density
rl ¼ liquid density
rg ¼ gas density
m ¼ molecular viscosity
mt ¼ turbulent viscosity
1 ¼ turbulence dissipation rate
dij ¼ kronecker delta
s ¼ surface tension
f ¼ velocity potential
7 ¼ gradient operator
g ¼ specific heat ratio
z ¼ liquid bulk viscosity
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1. Introduction
Traveling bubble cavitation occurs near solid walls when the state of the pressure
distribution within the boundary layer is such that neither laminar nor turbulent
separation takes place. It is typically encountered on hydrofoils at small incidence
angles. The bubbles produced on hydrofoils are generally hemispherical.

Liquids contain nuclei of varying sizes. Each of them is characterized by a critical
pressure, Pc. Inception of cavitation is not directly related to the concentration of nuclei
but to the critical pressure of the weakest nuclei contained in the liquid (Lecoffre, 1999).
The number of bubbles produced depends on the concentration of active nuclei in the
liquid. An increase in the concentration of nuclei results in the reduction in the
maximum radius attained by the bubbles (Lecoffre, 1999).

An important factor affecting cavitation damage is the generation of extremely high
pressures by collapsing bubbles. The growth of a cavitation bubble moving through a
varying pressure field is fairly smooth and can be modeled using the Rayleigh-Plesset
equation with reasonable accuracy. On the other hand, the collapse process is quite
complex. The bubble collapses abruptly and the collapse is followed by successive
rebounds and collapses. In the final stages of bubble collapse, the bubble wall velocities
reach an appreciable fraction of the speed of sound in the liquid so that the liquid
compressibility is no longer negligible (Tomita and Shima, 1977). Liquid
compressibility plays an important role in the formation of shock waves during the
rebound phase that follows the collapse. The contents of the cavity have a significant
effect on the final pressures and on the pressure wave that emanates due to the
rebound.

Two characteristic effects are believed to be mainly responsible for the destructive
action of cavitation:

(1) the emission of shock waves upon the collapse of the bubble near a solid wall; and

(2) the generation of a high-speed liquid jet directed towards the solid wall.

Apart from the above two, a third effect was pointed out by Shutler and Mesler (1965):

During the collapse phase, the bubble is attracted towards the boundary, leading to a reduced
distance at the moment of collapse. This increases the damage capability of the shock waves.

Hickling and Plesset (1964) were the first to use of numerical solutions of compressible
flow equations to explore the formation of pressure waves or shocks as a result of
bubble collapse. It was found that the peak pressure attenuates as 1/r as it propagates
away from the bubble, where r is the distance from the center of the bubble. Recently,
based on experimental data, Philipp and Lauterborn (1998) concluded that only
bubbles collapsing on the surface caused erosion. When a cavitation bubble collapses
near a solid surface, intense disturbances are produced, which generate highly
localized and transient surface stresses (Brennen, 1995). Repetition of this loading due
to repeated collapses causes local surface fatigue failure and the subsequent
detachment of material from the surface.

Cavitation, in most cases, is responsible for undesirable effects, such as, noise,
damage to surfaces and loss in performance of hydraulic machinery. Nevertheless,
there are also some useful applications. These include ultrasonic machining, ink-jet
printing, and ultrasonic dental cleaning (Lecoffre, 1999). In most applications,
cavitation acts as an amplifier of flow effects by focusing the local energy. A better
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understanding of the physics behind this phenomenon could help in the development
of tools for predicting the pressure on a wall induced by cavitation.

In the last decade, significant progress has been achieved in the field of cavitation
modeling based on the solution of the Navier-Stokes equations. These studies can be
put into two categories. In one category, the cavity region is assumed to have a
constant pressure equal to the vapor pressure of the corresponding liquid and the
computations are performed only for the liquid phase. The liquid-vapor interface is
tracked based on this assumption. In the second category, flows of both phases are
computed. A volume fraction equation is solved along with the flow equations to
simulate the cavitating flow. These cavitation models can be used to obtain the volume
fraction contours and to track liquid-vapor interface. However, they cannot predict the
local pressures developed due to cavitation bubble collapse. The models are good tools
to simulate sheet cavitation but, may not be able to predict traveling bubble cavitation
very accurately. In order to study the mechanism of cavitation erosion in detail, it is
essential to develop a tool that could interface the macroscopic level of the flow field
and the microscopic level of the cavitation bubble.

The rest of this paper is organized as follows: Section 2 presents an overview of the
proposed approach for tracking a cavitation bubble and for computing the pressure
induced by the collapse of the bubble on a solid wall; Section 3 presents a model of a
cavitation bubble;. Sections 4 and 5 demonstrate an example using the proposed approach.

2. Approach
An outline of the solution approach is shown in Figure 1. The inlet flow conditions and
the geometry of the hydrofoil constitute the input. A computational fluid dynamics
(CFD) solver is used to determine the flow field. In this study, the Fluent 6.0 code was
used as the CFD solver. The final output is the pressure pulse amplitude on the surface
of the hydrofoil.

The following steps are involved in the approach:

(1) Use a CFD solver to simulate 2D steady flow around a hydrofoil for a certain set
of input conditions (hydrofoil geometry, angle of attack, free stream velocity,
free stream pressure and liquid properties). (It is assumed that the gross
velocity and pressure fields for the cavitating flow do not differ from those in
non-cavitating flow since we are considering incipient cavitation). Obtain the
pressure and velocity fields as a function of space.

Figure 1.
Block diagram of the

solution approach
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(2) Determine the pathline of a particle originating at the point corresponding to the
minimum pressure coefficient Cpmin and moving downstream with the flow. A
cavitation bubble originating at the minimum pressure location would travel
along the same path. The following procedure can be used to determine the
pathline of the bubble:

a) From the results of Step 1. find the node point (xmin, ymin) corresponding to
the minimum pressure location (Cpmin). This is the position of the pathline of
the bubble at time t ¼ 0:

b) Find the corresponding velocity vectors uxðt ¼ 0Þ; uyðt ¼ 0Þ and Pressure
Pðt ¼ 0Þ:

c) Compute the displacement of the bubble Dx, Dy, in time Dt.

d) Find the node point (x1, y1) corresponding to the position of the bubble at
t1 ¼ t þ Dt:

e) Find the velocity vectors ux(t ¼ t1), uy(t ¼ t1) and the pressure P(t1)
corresponding to node point (x1, y1).

f) Repeat steps c, d and e to determine the position of the bubble as a function
of time (x(t), y(t)) and the external static pressure acting on the bubble as a
function of time, P(t).

(3) Perform numerical integration of the Rayleigh-Plesset equation for a bubble
with initial radius, R0, moving in a varying pressure field given by P(t) and
determine the radius of the bubble as a function of time R(t). Find the maximum
bubble radius Rmax.

(4) Evaluate the partial pressure (pg0
) due to non-condensable gas in the bubble

corresponding to the initial bubble radius, R0. Find the gas pressure pgm

corresponding to the maximum radius Rmax assuming isothermal expansion.
Determine the minimum radius (Rmin) by numerical integration of the equation
of motion of the bubble wall (including liquid compressibility effects), and find
the corresponding pressure generated in the bubble.

(5) Find the shortest distance between the bubble center and the hydrofoil surface
at the beginning of the collapse. Determine the peak pressure amplitude on the
hydrofoil surface due to bubble collapse.

In order to obtain a solution to the problem, the following set of simplifying
assumptions were made:

. The cavitation bubble is spherical throughout the growth and collapse.

. The growth and collapse is treated as if there is a single bubble in the liquid field.

. Bubble growth phase is isothermal and collapse phase is adiabatic.

. Partial pressure of the non-condensable gas inside the bubble is negligible in the
bubble growth phase.

. The mass of non-condensable gas contained in the bubble is constant.

. Thermal effects are negligible.

. Liquid compressibility and viscosity effects are negligible in the growth phase.
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2.1 CFD solver
Fluent 6.0, which is a well known, commercially available, CFD solver, was used to
simulate the steady flow around a rigid, 2D hydrofoil (NACA-0012). The pressure field
is calculated from the pressure distribution over the hydrofoil in non-cavitating flow. It
is assumed that the pressure coefficient is not significantly affected by the cavitation
bubbles in the flow. The standard k-1 model with standard wall functions is used to
account for the turbulence effects in the flow.

2.1.1 Governing equations: Reynolds-averaged Navier-Stokes (RANS) equations. The
flow under consideration is a 2D, incompressible and turbulent flow. The governing
equations for 2D incompressible flow are:

›r

›t
þ

›

›xi
ðruiÞ ¼ 0 ð1Þ

r
dui
dt

� �
¼ 2

›p

›t
þ

›

›xj
m

›ui
›xj

þ
›uj
›xi

2
2

3
dij

›ui
›xi

� �� �
þ

›

›xj
2ru0iu

0
j

� �
ð2Þ

“Reynolds stresses” 2ru0iu0j; must be modeled in order to close the system of equations.
The Boussinesq hypothesis relates the Reynolds stresses to the mean velocity
gradients as:

2ru0iu
0
j ¼ mt

›ui
›xj

þ
›ui
›xj

� �
2

2

3
rkþ mt

›ui
›xi

� �
dij ð3Þ

where mt is the turbulent viscosity. The Boussinesq hypothesis is used in the k-1 model.
Two additional transport equations (for the turbulent kinetic energy, k and the
turbulence dissipation rate, 1) must be introduced and solved.

3. Single bubble model
Consider a spherical bubble with radius R in a liquid with static pressure, P. The
pressure inside the bubble is pb. (Figure 2):

pb ¼ P þ 2s=R ð4Þ

pb ¼ pg þ pv ð5Þ

Figure 2.
Spherical bubble in a

liquid
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The pressure of the gas at constant temperature, pg, is given by:

pg ¼ constant=R 3 ð6Þ

Corresponding to a particular state of the bubble denoted by subscript “0” we have:

pg0
þ pv ¼ P0 þ

2s

R0
ð7Þ

The equation for the quasi-static isothermal response of a bubble for a radius R is:

pg0

R0

R

� �3

þpv ¼ P þ
2s

R
ð8Þ

A given bubble is characterized by a critical pressure Pc and a critical radius Rc. At the
critical point where the pressure becomes maximum, dP=dR ¼ 0: On differentiating
the equilibrium equation, equation (5), with respect to R and letting dP=dR ¼ 0; we get:

Rc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
pg0

R0

s

r !
R0 ð9Þ

Combining equations (8) and (9) produces the following relation between the critical
pressure, pc, and critical radius Rc:

Pc 2 pv ¼ 2
4

3

s

Rc
ð10Þ

This expression reveals that the critical pressure is always lower than the vapor
pressure of the liquid and can become negative for a sufficiently small value of the
critical radius.

3.1 Bubble dynamics: Rayleigh-Plesset equation
Consider a bubble moving through a region in which the pressure varies with time. Let
the center of the bubble be the origin “O” and let “M” be any point at a distance r from
the origin. P(t) is the static pressure in the liquid at a distance from the bubble and R is
the instantaneous radius of the bubble at time t (Figure 3).

Figure 3.
Spherical bubble in a
varying pressure field
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The velocity potential f for motion of the liquid with spherical symmetry is:

f ¼
R 2 _R

r
ð11Þ

where _R ¼ dR=dt:
Bernoullis’ equation for an unsteady flow of an irrotational liquid may be written as:

2
›f

›t
þ

1

2
ð7fÞ2 þ

pðrÞ

rl
¼

PðtÞ

rl
ð12Þ

where p(r) is the static pressure at a distance r.
From equation (11) we have:

ð7fÞ2 ¼
R 4 _R2

r 4
ð13Þ

and:

›f

›t
¼

1

r
ð2R _R 2 þ R 2 €RÞ ð14Þ

Substituting equations (13) and (14) in equation (12) and setting r ¼ R; the equation of
motion for the bubble radius is determined, i.e.:

ð7fÞ2jr¼R ¼ _R 2 ð15Þ

›f

›t
jr¼R ¼ 2 _R2 þ R €R ð16Þ

Thus, equation (12) becomes:

pðRÞ2 PðtÞ

rl
¼

3

2
_R2 þ R €R ð17Þ

Equation (17) is known as the Rayleigh-Plesset equation, which is the general equation
of motion for a spherical bubble in a liquid with given external pressure P(t).

From equations (4) and (5) we have:

pðRÞ ¼ pb 2
2s

R
¼ pv þ pg 2

2s

R
ð18Þ

Neglecting the pressure due to the non-condensable gas pg, we have pb ¼ pv and the
Rayleigh-Plesset equation (equation (17)), takes the form:

R €Rþ
3

2
_R2 ¼

pv 2
2s
R 2 PðtÞ

rl
ð19Þ

or:

R €Rþ
3

2
_R2 ¼

pv 2 PðtÞ

rl
2

2s

rR
ð20Þ
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The above equation could be solved analytically if the value of P(t) is a constant say,
P0. In that, the equation (20) reduces to the Rayleigh equation. In the case of varying
external pressure P(t), numerical integration of the equation (20) is required to obtain a
solution. The solution is determined when the two initial conditions are specified.

3.1.1 Effect of viscosity. The equation of motion of a bubble in a viscous liquid is
given by the following equation:

R €Rþ
3

2
_R2 ¼

1

rl
pv 2 P 2

2s

R
2 4m

_R

R

� �
ð21Þ

In a liquid such as water, with a small coefficient of viscosity, the viscous term has a
negligible effect on a growing bubble. However, during the final stage of collapse, the
value of _R becomes very large and the viscous effects cannot be neglected.

3.1.2 Thermal effects. During the bubble growth, a cooling effect is produced due to
evaporation leading to a temperature decrease. Conversely, as the bubble collapses,
vapor condensation causes the temperature to rise. The variation in the temperature
causes a change in the vapor pressure ( pv) that can significantly affect the bubble
dynamics. However, cavitation bubbles in usual hydrodynamic situations occur at
temperatures appreciably below the ordinary boiling temperature, so that the vapor
density and pressure are small. Under such a condition, the thermal effects may be
neglected over the entire growth phase and the nearly all of the collapse phase
(Brennen, 1995).

3.2 Determination of pressure generated due to cavitation bubble collapse
The equilibrium equation for a micro-bubble with radius R0 subjected to external
static-pressure, P, are developed from:

pb ¼ P þ
2s

R0
ð22Þ

pg0
þ pv ¼ P þ

2s

R0
ð23Þ

pg0
¼ P þ

2s

R0
2 pv ð24Þ

Assuming the bubble growth process is isothermal, we can determine the partial
pressure of the gas in the bubble corresponding to maximum bubble radius Rmax (Rmax

is obtained by numerical integration of the Rayleigh-Plesset equation):

pgm
¼ pg0

R0

Rmax

� �3

ð25Þ

The minimum radius attained by the bubble corresponding to the gas pressure, pgm

and a maximum bubble radius Rmax (Hickling and Plesset, 1964), is given by:
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Rmin ¼ Rmax
1

ðg2 1Þ

pgm

P 2 pv 2 pgm
þ 3s

Rmax

� �
2
4

3
5

1
3ðg21Þ

ð26Þ

where P is the static pressure in the liquid and pv is the vapor pressure of the liquid.
The maximum impulsive pressures pmax occurring during the bubble collapse for

incompressible liquid can be estimated as follows (Plesset and Perry, 1962):

pmax ¼ pgm

Rmax

Rmin

� �3g

2
2s

Rmin
ð27Þ

where, pgm
is the gas pressure inside the bubble at the beginning of the collapse, Rmax is

the radius of the bubble at the beginning of the collapse, Rmin is the minimum bubble
radius and g is the ratio of specific heats for the gas.

3.2.1 Effect of liquid compressibility. As mentioned earlier, the liquid compressibility
cannot be neglected while analyzing the bubble collapse process. Moreover, since the
bubble collapse occurs in an extremely short period of time, the process can be
considered adiabatic and governed by the relation PV g ¼ constant; where, P is the
pressure, V is the volume and g is the specific heat ratio. Tomita and Shima (1977)
derived the equation of motion of a spherical bubble in a viscous compressible liquid.
The equation of motion of the bubble with first order correction for the liquid
compressibility is:

R €R 1 2 ð1 þ 1Þ
_R

c1

� �
þ

3

2
_R 2 4 2 1

3
2

4

3

_R

c1

� �
þ

1

rl
P 2 pr¼R 2

R_pr¼R

c1

� �
¼ 0 ð28Þ

where:

1 ¼ 1 2
rg

rl
¼ 0:99881;

pr¼R ¼ pgm

Rmax

R

� �3g

2
2s

R
ð29Þ

and:

_pr¼R ¼ 23gpgm

_R

R

Rmax

R

� �3g

þ
2s

R 2
_R ð30Þ

In these expressions, pgm
is the non-condensable gas pressure inside the bubble

corresponding to the maximum bubble radius.
The maximum impulse pressure corresponding to the minimum bubble radius Rmin

is given by the following (Tomita and Shima, 1977):
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pmax ¼ pgm

Rmax

Rmin

� �3g

2
2s

Rmin
þ

4m 4m
3 þ j

� �
r2
l R

2
minc

2
1

pgm

Rmax

Rmin

� �3g

2
2s

Rmin
2 P

 !
ð31Þ

3.3 Formulation
The Rayleigh-Plesset equation is written as:

R €Rþ
3

2
_R2 ¼

pv 2 PðtÞ

r
2

2s

rR
ð32Þ

where _R ¼ dR=dt and €R ¼ d2R=dt 2:
Rearranging terms we get:

€R ¼
1

rR
½pv 2 PðtÞ�2

3

2R
ð _RÞ2 2

2s

rR 2
ð33Þ

To numerically solve this ordinary differential equation, the Runge-Kutta method
(Kellison, 1975; Hornbeck, 1975; Maron, 1987) is used. To accomplish this, equation (33)
is written as two first-order differential equations:

f 1ðt; z;RÞ ¼ z0 ¼
1

rR
½pv 2 PðtÞ�2

3

2R
ðzÞ2 2

2s

rR 2
jzð0Þ ¼ 0 ð34Þ

f 2ðt; z;RÞ ¼ R0 ¼ z jRð0Þ ¼ R0 ð35Þ

The two equations have to be solved simultaneously. Since, the equation is non-linear,
the coefficients in the expression for f1 are unknown at each step. This problem can be
solved by taking a suitably small time step (Dt) and using the value of R from the
previous time step. The value of P(t) is taken from the array of pressure values that
gives the external pressure acting on the bubble as a function of time.

4. Validation
4.1 Validation of the Fluent solver using airfoil data
The Fluent solver was used to simulate the steady flow of air around an airfoil
(NACA-0012) to compute the section lift and drag coefficients. The results were
compared to experimental data for a NACA-0012 wing section (Abbott and Doenhoff,
1987). Figure 4 shows the variation in the section lift coefficient as the angle of attack of
the airfoil is varied from 08 to 88. As may be seen, the relationship between angle of
attack and the section lift coefficient is almost linear. The solver output coincides with
the experimental results. Figure 5 shows the relation between the section lift and drag
coefficients.

It can be observed that the solver is able to reproduce the experimental results
accurately, particularly for lower angles of attack. However, there is a slight deviation
that is observed as the angle of attack is increased.

4.2 Validation of the numerical simulation of the bubble growth
Plesset (1949) used numerical integration of the Rayleigh-Plesset equation to simulate
the growth and collapse of a cavitation bubble moving in a varying pressure field.
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The results obtained by Plesset were used to validate the computer code used in this
study to numerically simulate cavitation bubble dynamics. The varying pressure field,
P(t), obtained from the experimental data (Plesset, 1949) is inputted into the program to
predict the growth and collapse of the cavitation bubble. The integration constants of
the equation of motion were fixed by using the experimentally observed value for the
maximum radius Rmax, where _R ¼ 0: The bubble dynamics is simulated by integrating
backward (growth portion) and forward (collapse portion) from the point
corresponding to the maximum radius, Rmax.

The bubble dynamics curve for given pressure function P(t) is shown in Figures 6
and 7. The output of the program agrees quite well with the results obtained by Plesset
(1949).

4.3 Validation of the method used to determine the bubble collapse pressure
As mentioned, liquid compressibility effects have to be accounted for in the bubble
collapse analysis. The equation of motion for the bubble wall derived by Tomita and
Shima (1977) has been applied to simulate the bubble collapse. The fourth-order
Runge-Kutta method is used for the numerical integration of equation (25). The bubble
collapses from a maximum radius Rmax to a minimum radius Rmin. The maximum
collapse pressure pmax is determined using equation (31). The pressure of the gas inside

Figure 5.
Comparison of solver

results with airfoil data for
NACA-0012 wing section:

drag vs lift coefficient
(Chord Reynolds number

4:5 £ 106)

Figure 4.
Comparison of solver

results with airfoil data for
NACA-0012 wing section
(Chord Reynolds number

4:5 £ 106)
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the bubble, pg, has a significant effect on the collapse pressure. The results obtained by
Tomita and Shima (1977) were used to validate the method for determining the bubble
collapse pressure. A comparison between the results obtained by Tomita and Shima
and the computed results is shown in Table I. The minimum bubble radius Rmin and
the maximum collapse pressure pmax have been calculated for different combinations
of the bubble radius Rmax and the gas pressure pg.

The results are comparable for higher values of pg. As the gas pressure is reduced,
there is a significant increase in the magnitude of the collapse pressure and a deviation

Figure 6.
External pressure P(t)
acting on the cavitation
bubble as a function of
time

Figure 7.
Bubble dynamics R(t).
Comparison between the
FORTRAN output and the
results obtained by Plesset
(1949)
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in the results is observed. Figure 8 shows the dynamics of a collapsing bubble for two
different values of the gas pressure pg. The computational code was able to reproduce
the results obtained by Tomita and Shima (1977).

It is observed that the bubble collapse is followed by a series of rebounds. The
maximum radius attained by the bubble in the rebound progressively decreases. It can
be seen that the gas pressure inside the bubble has a significant effect on the bubble
dynamics.

5. Numerical simulation
5.1 Problem description
The approach developed in this study is applied to the following problem: steady
turbulent flow around a stationary, rigid 2D hydrofoil (NACA-0012). The geometric
and ambient conditions are shown in Table II and the fluid properties are presented in
Table III.

Density of water 998.32 kg/m3

Viscosity of water 1.003 £ 1023 Ns/m2

Bulk viscosity of water 4.7 £ 1023 Ns/m2

Surface tension of water 7.247 £ 1022 N/m
Density of dry air 1.1668 kg/m3

Table III.
Fluid properties at 208C

Chord length 10 cm
Angle of attack 08
Inlet flow 25 m/s
Free stream pressure 1 atm (101,300 Pa)

Table II.
Problem specifications

Figure 8.
Collapsing bubble
dynamics: initial bubble
radius ¼ 1 mm
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5.2 Results
Based on the approach outlined above, the simulation of traveling bubble cavitation
was performed. The Fluent solver was used to determine the flow field for flow around
a rigid 2D hydrofoil. The flow is turbulent, 2D unsteady. The standard k-1 turbulence
model was used with a 2 percent inlet turbulence intensity. The information obtained
from the solver output was incorporated into the bubble dynamics simulation code to
simulate the growth and collapse of a cavitation bubble moving along the surface of
the hydrofoil. Figure 9 shows the mesh used for the simulation.

An enlarged view of the mesh showing the hydrofoil is shown in Figure 10. It can be
observed that the node density is high near the hydrofoil, especially near the leading
and trailing edges. This is necessary since the gradients are very high in this region of
the flow field.

5.2.1 Results from Fluent solver. The following are the results obtained from the
Fluent solver used to determine the velocity and pressure fields.

5.2.1.1 Pressure contours. Figure 11 shows the pressure contours in the flow field.
Since, the angle of attack is zero the pressure distribution is symmetrical about the
hydrofoil centerline.

5.2.1.2 Velocity distribution. Figure 12 shows the velocity vectors in the flow around
the hydrofoil. It can be seen that the flow is streamlined and the maximum velocity
zone corresponds to the minimum pressure zone in Figure 11.

5.2.1.3 Pressure distribution along the hydrofoil surface. Figure 13 shows the
distribution of static pressure along the surface of the hydrofoil. The leading edge of

Figure 9.
Mesh
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Figure 10.
Enlarged view of the mesh
showing the hydrofoil

Figure 11.
Static pressure contours
around the hydorfoil
(showing gauge pressure
in Pa)
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the hydrofoil experiences very high pressure. The static pressure drops rapidly as we
move along the surface corresponding to increasing flow velocity. After the minimum
pressure point, the static pressure begins to rise.

5.2.2 Simulation of the bubble growth and collapse. The results of the solver are used
as input for the method that numerically simulates the growth and collapse of a
cavitation bubble. The input data consists of the following:

. Co-ordinates (x,y) of all the nodes in the flow field.

. Static pressure, P(x,y).

Figure 12.
Velocity vectors around

the hydrofoil (colored by
velocity magnitude in m/s)

Figure 13.
Static pressure

distribution along the
hydrofoil surface
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. Velocity components, ux and uy.

. Derivatives of the velocity with respect to x and y.

. Initial conditions: Rð0Þ ¼ R0 and _Rð0Þ ¼ 0:

It is important to select an appropriate time step size, Dt, to ensure the accuracy of the
results. This can be accomplished by performing a parametric study for the time step
size. The numerical simulation of the bubble growth is performed for various values of
Dt and the corresponding maximum bubble radius, Rmax, is determined. Figure 14
shows the results of the parametric study.

It can be observed that the value of the maximum bubble radius Rmax converges as
the time-step size is decreased. A time-step size of 1027 s is considered as an optimum
value for the problem at hand.

Table IV shows the results of the example to illustrate the method for the simulation
of the bubble growth and collapse. The initial bubble radius, R0, was assumed equal to
100mm.

Figure 15 shows the variation in the bubble radius as the cavitation bubble moves
along the surface of the hydrofoil. The bubble begins to grow as it passes the minimum
pressure zone where, the absolute static pressure is 226,100.00 Pa. The external
pressure, P(t), gradually increases as the bubble travels along the surface of the

1 Maximum bubble radius (Rmax) m 4.61 £ 1023

2 Distance between wall and bubble center during
collapse (L) m 3.344 £ 1024

3 Initial gas pressure inside the bubble ( pg0
) Pa 100,438.00

4 Gas pressure inside the bubble corresponding to the
maximum radius ( pgm

) Pa 1.024
5 Minimum bubble radius (Rmin) m 1.35 £ 1025

6 Maximum pressure generated due to collapse ( pmax) atm 441,666.00
7 Peak pressure on the hydrofoil surface ( pwall) atm 17,832.00

Table IV.
Results for R0 ¼ 100mm

Figure 14.
Time step size
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hydrofoil. The cavitation bubble grows from an initial radius, R0, to a maximum size,
Rmax.

As the bubble grows in size, the partial pressure of the non-condensable gas inside
the bubble becomes negligibly small when compared to the vapor pressure. When the
external pressure, P(t), exceeds the vapor pressure, the vapor inside the bubble begins
to condense into liquid. This results in the collapse of the bubble. The bubble collapses
rapidly to a minimum size corresponding to Rmin. Since, the bubble collapse occurs
within an extremely short period, it is assumed that the compression of gas inside the
bubble is adiabatic. The collapse of the bubble leads to the generation of very high
pressures causing a rebound of the bubble. A pressure pulse is emitted that propagates
radially from the bubble center and impinges on the surface of the hydrofoil. The peak
amplitude of this pressure pulse attenuates geometrically with distance from the
bubble center.

5.2.3 Effect of the initial bubble radius on the maximum collapse pressure. The size of
nuclei present in a typical sample of water randomly varies in the range 50-500mm
(Hickling and Plesset, 1964). A parametric study was performed to investigate the
effect of the initial bubble radius on the maximum pressure generated during collapse.
The results were obtained for both compressible and incompressible fluids. Figure 16
compares the results obtained from compressible and incompressible fluid analysis.
The relation between the initial bubble radius, R0, and the gas pressure in the bubble at
the beginning of collapse, pgm

, is shown in Figure 17.
It is clear that the effect of liquid compressibility has greater significance for lower

values of R0, corresponding to lower gas pressures inside the bubble. The results from
the compressible and incompressible analyses converge for higher values of the initial
bubble radius R0.

5.3 Probability density function of the maximum collapse pressure
The initial value of the bubble radius, R0, is uncertain. Assuming a probability density
function for this radius, we can determine the probability density function of the
maximum pressure due to the collapse of the bubble. When very little information is

Figure 15.
Variation in the bubble

size as a function of time
ðR0 ¼ 100mmÞ
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available about a random variable, it is standard practice to obtain lower and upper
bounds about the variable based on judgment and to assume a uniform probability
density for this variable. The selection of the uniform probability density is motivated
by the fact that this distribution has the maximum Shannon’s entropy among all
distributions that are bounded by the lower and upper limits. It was assumed that the
initial radius was uniformly distributed in the range 50-500mm.

Two approaches can be used to determine the probability density function of the
maximum collapse pressure:

(1) a Monte Carlo simulation; and

(2) analytical methods based on probability calculus for the transformation of the
random variables.

Figure 16.
Effect of the initial bubble
size on pmax

Figure 17.
Relation between R0 and
pgm

HFF
16,4

412



5.3.1 Monte Carlo simulation. In this approach, N random values of the initial radius in
the range 50-500mm are generated by sampling from a uniform distribution. For each
value of the initial bubble radius, the numerical simulation of bubble dynamics is
performed and the maximum collapse pressure, pmax, is determined. Since, the
maximum pressure varies from 103 to 106 atm, it is convenient to use ln( pmax) for the
analysis. The results are displayed in the form of a histogram. The accuracy of
increases with the number of simulations (N); the larger the value of N, the greater the
accuracy. This approach is simple but can be computationally expensive.

5.3.2 Analytical method. This approach is based on probability calculus for the
transformation of random variables. Say, y is a function of a random variable x, that is,
y ¼ gðxÞ: Here, x is the independent variable and y is the dependent variable. Given the
probability density function of x : f X ðxÞ; the probability density function of y : f Y ð yÞ
can be determined from:

f Y ð yÞ ¼
f X ðxÞ

dg
dx

x¼g21ð yÞ

�� ð36Þ

It is easier to use the analytical method if an expression approximating the maximum
pressure as a function of the initial bubble radius is available. Stepwise regression was
done to fit a polynomial to approximate the relationship between R0 and pmax.

The data for the regression analysis is obtained by performing the numerical
simulation of bubble dynamics for various values of the initial radius (R0 varying
between 50 and 500mm) and determining the corresponding maximum pressure pmax

and ln( pmax). Ninety data points were used for the regression analysis, of which 50
points lie in the range: 50mm # R0 # 500mm; since there is a large variation in the
maximum pressure in this range. A forward stepwise regression method was used for
the regression analysis. Since, the magnitude of the R0 is very small, the values are
normalized using the maximum value of the initial radius. The following equation was
determined using regression analysis:

lnð pmaxÞ ¼ 16:8076 2 23:5612
R0

0:0005

� �

þ 27:47
R0

0:0005

� �2

212:9589
R0

0:0005

� �3

ð37Þ

The quality of the approximation obtained from the regression equation can be
assessed by the coefficient of determination (Varnderman, 1994). This quantity can be
interpreted as the fraction of raw variation in the quantity that is approximately
accounted by using approximation (37). The value of the coefficient of determination is
98.8 percent, which suggests an accurate approximation.

Assuming that R0 is a random variable distributed uniformly in the range
50-500mm, the probability density function for ln( pmax) could be estimated.

Figure 18 shows the probability density function of the maximum pressure. From
this figure, we observe that the most likely values of ln( pmax) are in the range 8-10. This
corresponds to pmax falling within the range 3:0 £ 103-1:6 £ 105 atm: The peak in the
graph corresponds to a value of 9.3 for ln( pmax) or pmax ¼ 1:09 £ 104 atm:
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These results were verified using Monte Carlo simulation with 2,000 randomly
generated values for R0. The results of the Monte Carlo simulation are shown in
Figure 19.

The probability density function of ln( pmax) can be estimated from the Monte Carlo
simulation by dividing the frequency corresponding to each bin value for ln( pmax) by
the total number of simulations. Figure 20 compares the results obtained analytically
and those from Monte Carlo simulation.

As may be seen, the two results agree reasonably well. The small deviation can be
explained by the fact that the results obtained from the Monte Carlo simulation are
average values of the probability density over the range corresponding to each bin.

5.4 Discussion
The approach used in this paper is based on the assumption that the cavitation bubble
is spherical throughout its growth and collapse. However, it is a known fact that the
presence of a solid boundary near the cavitation bubble perturbs the spherical
symmetry (Benjamin and Ellis, 1966). The adjacent solid boundary has a damping
effect on the collapse rate. It is expected that the pressure pulse emitted during collapse
is weaker due to bubble deformation. Nevertheless, experimental measurements with

Figure 18.
Probability density
function of ln( pmax)

Figure 19.
Monte Carlo simulation
results
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single bubbles have confirmed that even in the case of a bubble in contact with the
solid boundary, the collapse is accompanied by the emission of shock waves whose
pressure amplitudes were as high as 104 atm (Lauterborn and Bolle, 1975), which is in
agreement with the results obtained herein.

The single bubble model used in this analysis does not account for the effect of
neighboring bubbles. The presence of a neighboring bubble has a similar effect as that
of a solid boundary. It deforms the spherical symmetry of the bubble resulting in
weaker pressure amplitudes during collapse.

6. Conclusions
The major conclusions of this study are:

. A new approach has been developed to simulate traveling bubble cavitation by
interfacing a CFD solver for simulating a flow with a program simulating the
growth and collapse of the bubble.

. The amount of non-condensable gas (air) inside the cavitation bubble depends on
the initial bubble (micronucleus) size, R0. The initial radius of the cavitation
bubble has a significant effect on the maximum pressure generated during
collapse.

. The maximum local pressure developed during cavitation bubble collapse is on
the order of 104 atm.

. Liquid compressibility plays an important role during bubble collapse. The
effect of liquid compressibility is significant when the initial bubble radius is
very small ð50mm # R0 # 100mmÞ: For higher values of R0, the results
obtained from compressible and incompressible analyses converge.

. Assuming that the initial bubble radius ð50mm # R0 # 500mmÞ is distributed
uniformly, the maximum collapse pressure lies in the range
3 £ 103 atm-2:8 £ 106 atm: The most probable value for the maximum collapse
pressure is about 104 atm.

Figure 20.
Comparison between the

analytical and Monte
Carlo results
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